If it's not what You are looking for type in the equation solver your own equation and let us solve it.
800=-16t^2+256t
We move all terms to the left:
800-(-16t^2+256t)=0
We get rid of parentheses
16t^2-256t+800=0
a = 16; b = -256; c = +800;
Δ = b2-4ac
Δ = -2562-4·16·800
Δ = 14336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14336}=\sqrt{1024*14}=\sqrt{1024}*\sqrt{14}=32\sqrt{14}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-256)-32\sqrt{14}}{2*16}=\frac{256-32\sqrt{14}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-256)+32\sqrt{14}}{2*16}=\frac{256+32\sqrt{14}}{32} $
| 7(x-1)=10 | | x/9+4/3=2(x-5) | | a÷3+4=13 | | (3x^2/5)-2x=0 | | x-101=x+89 | | 15(y-4)-2y(y-9)+5(y+6)=0 | | 6x-40=80 | | 6^x=36/6^3x | | x/43=0,60/24 | | x/43,363=0,60/24 | | 5(m+1)=(m+1) | | 3(x-4)+4(2x-1)=6 | | 4x+60=80 | | Z^2=48+8x | | 0.5(x+0.1)=0.1 | | 0.5^x=10 | | 11b+8=25 | | 4/9=r+3/45 | | −3x=99 | | 5-d=9d | | X^5-3x+7=0 | | 100=x/2+40 | | 1/2x+3/4-5/2x=3/4+1/4 | | 77=(x+3)×(x-1) | | 80-01x=20 | | 100x-100000=0 | | 24-6x+((.375(x^2))=0 | | 12x+20=600 | | 4=5(t-2) | | X^2=5-12i | | M=m/7 | | 3x-18=5+x |